
1021. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let ABC be an acute triangle. Show that
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where the sum  is over all cyclic permutations of .A,B,C.

Solution by Arkady Alt , San Jose ,California, USA.

Note that by AM-GM Inequality ( cosA, cosB  0) we have
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Since by Cauchy Inequality
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then suffice to prove
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we can rewrite inequality (1) as
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Inequality (2) follows immediately from well known Gerretsen’s Inequality s2  16Rr  5r2

and Euler’s Inequality R  2r. Indeed,
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Inequality (2) can be easy proved directly, without reference to Gerretsen’s Inequality

an Euler’s Inequality, if we use "free parametrization of a triangle", namely let

x  s  a,y  s  b, z  s  c.Then assuming s  1, due to homogeneity of inequality (2),

we obtain a  1  x,b  1  y,c  1  z,where x  y  z  1,x,y, z  0,and since
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xyz we obtain that (1) 1  3xy  yz  zx  xyz  3xyz 

3xy  yz  zx  1  x  y  z2.


