1021. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let $A B C$ be an acute triangle. Show that

$$
\sum \frac{\sec A}{\sqrt{\cos A+\cos B}} \geq 6
$$

where the sum \sum is over all cyclic permutations of . (A, B, C).

Solution by Arkady Alt, San Jose ,California, USA.

Note that by AM-GM Inequality ($\cos A, \cos B>0$) we have
$\sqrt{\cos A+\cos B}=\sqrt{1(\cos A+\cos B)} \leq \frac{1+\cos A+\cos B}{2}$
Then $\sum \frac{\sec A}{\sqrt{\cos A+\cos B}} \geq \sum \frac{2 \sec A}{1+\cos A+\cos B}=\sum \frac{2}{\cos A+\cos ^{2} A+\cos A \cos B}$.
Since by Cauchy Inequality
$\sum \frac{1}{\cos A+\cos ^{2} A+\cos A \cos B} \geq \frac{9}{\sum\left(\cos A+\cos ^{2} A+\cos A \cos B\right)}$ then suffice to prove
$\frac{18}{\sum\left(\cos A+\cos ^{2} A+\cos A \cos B\right)} \geq 6 \Leftrightarrow 3 \geq \sum \cos A+\sum \cos ^{2} A+\sum \cos A \cos B \Leftrightarrow$
$\sum\left(1-\cos ^{2} A\right) \geq \sum \cos A+\sum \cos A \cos B \Leftrightarrow$

$$
\begin{equation*}
\sum \sin ^{2} A \geq \sum \cos A+\sum \cos A \cos B \tag{1}
\end{equation*}
$$

Noting that $\sum \cos A=1+\frac{r}{R}, \sum \cos A \cos B=\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}}, \sum \sin ^{2} A=\frac{a^{2}+b^{2}+c^{2}}{4 R^{2}}=$ $\frac{2\left(s^{2}-4 R r-r^{2}\right)}{4 R^{2}}$ we can rewrite inequality (1) as
$\frac{2\left(s^{2}-4 R r-r^{2}\right)}{4 R^{2}} \geq 1+\frac{r}{R}+\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \Leftrightarrow 2\left(s^{2}-4 R r-r^{2}\right) \geq 4 R r+s^{2}+r^{2} \Leftrightarrow$
(2) $s^{2} \geq 12 R r+3 r^{2}$.

Inequality (2) follows immediately from well known Gerretsen's Inequality $s^{2} \geq 16 R r-5 r^{2}$ and Euler's Inequality $R \geq 2 r$. Indeed,
$s^{2}-\left(12 R r+3 r^{2}\right)=\left(s^{2}-16 R r+5 r^{2}\right)+\left(\left(16 R r-5 r^{2}\right)-\left(12 R r+3 r^{2}\right)\right)=$
$\left(s^{2}-16 R r+5 r^{2}\right)+4 r(R-2 r) \geq 0$.
Inequality (2) can be easy proved directly, without reference to Gerretsen's Inequality an Euler's Inequality, if we use "free parametrization of a triangle", namely let $x=s-a, y=s-b, z=s-c$. Then assuming $s=1$, due to homogeneity of inequality (2), we obtain $a=1-x, b=1-y, c=1-z$, where $x+y+z=1, x, y, z>0$, and since $4 R r=4 R r=a b c=(1-x)(1-y)(1-z)=x y+y z+z x-x y z, r^{2}=\frac{(s-a)(s-b)(s-c)}{s}=$ $x y z$ we obtain that $(1) \Leftrightarrow 1 \geq 3(x y+y z+z x-x y z)+3 x y z \Leftrightarrow$ $3(x y+y z+z x) \leq 1=(x+y+z)^{2}$.

